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Abstract-The main feature of this paper is the usage of transformations of all coordinates present in the
constitutive equation of a given class of matcrials (aencraliscd coordinates) to describe symmetry of
materials within the class. The matcrials considered here arc elastic materials and liquid crystals, a1thouab
the procedure can be used to descn'bc the symmetry of other classes.

One of the end-results of the exercise is that various theories of symmetry can be viewed toaether.

t. INTRODUCTION

The theory of symmetry has been formulated in the literature for many materials in mechanics.
For instance, the case of simple materials is formulated by Truesdell in ([1], Chap. IV) and that
of shells is discussed by Ericksen in[2}. Material symmetry is also discussed by Coleman[31,
Wang[4] and Carroll and Naghdi[S].

Normally, materials are classified according to their constitutive equations. For example, a
material for which the stress at each of its points depends only on the local deformation
gradient there is called elastic. Within any class are some materials which exhibit special
symmetries, e.g. some elastic materials, called isotropic solids cannot detect any rotation or
translation of the reference configuration or, in other words, of the material coordinates. This
symmetry of an isotropic solid within the class of elastic materials is therefore characterised by
the group of all rotations and translations.

To cover more special cases, the group of all unimodular linear transformations of material
coordinates is used[see 1] to describe symmetry within the class of elastic materials. However,
if symmetry transformations are restricted to transformations of material coordinates, the
symmetry of liquid crystals is not adequately described in an appropriate class of orientable

.materials. To properly describe this symmetry, one needs to use a larger group. We seek an
approach that unifies these theories of symmetry.

We consider transformations of all generalized coordinates present in a given constitutive
equation in order to describe the symmetry within the class specified by the equation. This set
of transformations well describe the symmetry of liquid crystals and, of course, it includes the
group of transformations in[1], when applied to elastic materials. In Section 2, we list some
requirements usually made on symmetry transformations. These are physically motivated.
Transformations which are obtained for the materials considered are also listed in Section 2,
One of the requirements on the symmetry transformations is that the representation of frame
indifference for a constitutive equation be preserved. This eventually leads to our seeking all
the automorphisms of the group of orientation-preserving isometries of Euclidean space. The
result obtained is given in Section 3. In Section 4, we put these ideas together to obtain
limitations on the mappings available.

2. REQUIREMENTS ON SYMMETRY TRANSFORMATIONS

Let us assume that we are given a constitutive equation of the form

for lsi s I, Isp s m, 1s q s m, where for a point (ut, u2, ... uM
), W depends only on the

values of the functions vl(u') in an infinitesimal neighborhood of (u·, u2, ... uRI). In this
equation, u', I s p s m are real variables, VI(U'), lsi s I are real-valued functions, and W is
the energy per unit coordinate volume, the volume measure being

du = du· du2 ••• duM.
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As indicated above, W denotes the values assumed by the function \¥. We shall consider the
special form

. (av. )
W = W au~' vi> u

q
, (2.1)

where W at point (u l
, u2, .. • uln) now depends on (iJvjau P, Vi, uq

) at that point. The set of
materials having this type of constitutive equation includes elastic materials, shells and static
theories of liquid crystals.

As stated in the introduction, we shall start with a set of transformations of the generalized
coordinates. With some smoothness and invertibility requirements, these will induce trans
formations of the constitutive equations, our goal being to describe the symmetry of a body.
We shall now put this in formal terms. Let 9)' be the set of all maps

T':O' x J .... (R' x Rm) x R1

(v, U, ~Tav, u), Ti(v, u), Ti(v, u, W». (i, a, W)

where

and

O'CR' XRm,J CR,
u 55 (u l , u2, ••• um),
v iE (VI> V2,' •• v,),

av _ [iJV,]
iJu == aup ,

if v is a given function of u. We shall assume the following:
(i) 3uo E Rm 3 for every v which is the first component of an element in a, {v} x N(Uo) C 0',

N(uo) being a neighbourhood of uo,
(ii) T' is differentiable in all coordinates; (2.2)

(iii) T' is 1-1, the inverse of T' defined on its image satisfies (i) and (ii), and (Ti, Ti):
O' .... R' x R'" is also 1-1.

We associate with T' the following transformation T of the constitutive eqn (2.1) at point
uo:

T:((;; (Uo),v(Uo), 110), w) ...
( (:: (Ilo), veao), ao), (W +A(Uo»~~: (uo)~) (2.3)

where 1IF1/ denotes the absolute value of the determinant of F. In other words, the constitutive
relation which associates a state (iJv/au (110), v(Uo), 110) with a real number W is transformed to
one which associates the state (iJi/iJa (ilo), V<ilo), ilo) with the product by IliJu/aa (110)11 of the sum
of the same real number Wand A (110), A, i, abeing determined by T'. Let 9) be the set of all
such T that arises from an element in 9)'. In (2.3), for a given state (av/au (uo), v(Uo), uo),

[
aa] iJap iJa

p I iJVj aap(v, U)I
au pq E au' (110) = aVj (v, u) "0 au' (110)+ au' 110'

[ ai] • au; =[av;(v, u)/ ..!EL.( )+ av;(v, u)/ ][au ( )J
aa ip allP OvJ "0 au' 110 au' "0 all 110 lIP

[au/all (uo)] being the inverse matrix of [aU/au (Uo)J. Our assumptions [2.2] make this
meaningful.

Definitions
Two material points 110, uI are said to be T-equivalent if 3 a transformation TE 9) 3
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for every state (ai/aa (u/), i(u,), u,), (av/au (110), v(uo), Uo) being the corresponding state.
The constitutive eqn (2.1) is said to be invariant under T at a material Point Uo if Uo is

T-equivalent to itself. Our definition (2.3) of T presumes that

- gau Iw= (W +A(Uo» Hau (Uo)1

and that this is an appropriate law of transformation for energy densities. Actually, this
transformation of W is suggested in[6] where quantities are transformed in such a way as to
preserve some conservation laws. The energy density W can be identified with either pOA or
p'S in(6]. The transformation rules given for these quantities reduce in our case to what we
have used in (2.3).

Having' introduced ~ as the set of transformations which we intend to use to describe
symmetry within the class (2.1), we next indicate how one can use physical considerations to
restrict ~ to a smaller set fl.

Our set of symmetry transformations fI should satisfy the following:
(a) Domain considerations. The state space is the set of all (av/a1l, v, u) that are physically

admissible for the material under consideration. For example, they might include only states for
which (a,/a,,) is of a certain rank. Every element of fI should be such that (ai/all, i, Q) is also
admissible. We give another example. In some theories, from physical considerations, the
energy density does not have a constant value over a set of states. For instance, in elasticity
theory, *does not usually assume a constant value on the set of all dilatations of a given state.
We shall require that its transform under any symmetry transformation in fI will not do so.

(b) PnstrVQtion of frame indiffennce. Normally, constitutive equations satisfy the principle
of frame indifference. Every element of fI should transform a given constitutive equation to
another which is also frame indifferent. This issue will be discussed in Section 3.

If flo ={T E ~IUo =Uo}, fI, forms a group under composition. We note that it is possible that
there may not be a material that has the whole of flo as its group of symmetry. However, in
such cases, one could list subgroups of fI, that are symmetry groups for some materials.

Some results
We shall now list the symmetry transformations that result if we apply some physical

considerations on the set ~ for elastic materials and liquid crystals. The proofs are contained in
Section 4.

Elasticity theory. The symmetry transformations are of the form

T:((:;, Xo), w)~((aRo:;:~,Xo),(W+A(Xo»~~)
where Ro is any rotation and

If restricted to ~aXJaxlI =1, a =I, Ro = I, and from the discussions in[7], the set reduces to
that in{1].

Uquid crystals. In the class specified by

af, (aD ax )W= w ax'ax,D,X (2.5)

where states satisfy, D' D =1, lax/axi =1, and (an/aX)TD =0, the group flCl'l of all symmetry
transformations with ao:= Uo contains elements of the form
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where laX/axl =(l/a 3) and R is a rotation. The set of all elements in [/112 that satisfies
a = 1, A(Xo) = 0, characterises the symmetry of the cholesteric liquid crystals.

As stated in the introduction, symmetry transformations for elastic materials are restricted
in[l] to unimodular transformations of the material coordinates. In addition when discussions
in [7] are also considered, frame indifference is taken to mean

where Q is an orthogonal tensor and not just a rotation as assumed in this paper. If we do the
same thingt for the class (2.5), the most symmetrical material similar to a liquid crystal will
have [see Section 4] constitutive equation of the form

• (an ). ( an T )W =w ax' n, Xo =W Qax Q ,Qn, Xo (2.6)

where Q is any orthogonal tensor. Since this includes symmetry under reflections and does not
necessarily imply symmetry under reversal of sign of n, it is clear; that unimodular trans
formations of material coordinates do not properly account for the symmetry of liquid crystals
themselves within the class (2.5).

Material isomorphism
Definition. Two material points "0, "\ are said to be materially isomorphic if they are

T-equivalent for some TE~
We note that if any two points of a shell are isomorphic in the sense given above, the shell is

uniform in the sense of definition (2.13) of[9].

3. FRAME INDIFFERENCE. SOME RESULTS IN GROUP THEORY

(a) Frame indifference and theorem
Although we have been concerned so far with a constitutive equation that relates energy

density to the stale of a body, it is clear that our discussions can be used to describe symmetry
of constitutive equations that relate the state to other quantities such as a stress tensor. Here,
we shall discuss constitutive equations in general terms as to include these cases.

Suppose we are given a constitutive equation denoted by I which relates states {s} to
quantities {a}, i.e.

I
s--.a. (3.1)

Generally, a transformation T will transform§ I to another constitutive equation g =T/.
Roughly, the principle of frame indifterence will stipulate that a given material cannot
distinguish between some frames. In our terminology, this means I is invariant under a set of
transformations gt. We write this formally as

SI =IVS E f1l. (3.2)

For the theories of interest here, gt consists of all combinations of rotations and translations.
We take as a basic requirement on symmetry transformations the demand that TI should

also be frame indifferent viz

~I=T/VS E f1l.

tWe note that this extension is not in any way suaested inU]. It is done here with the overall aim of unifyitlJ various
theories of symmetry.

tSome liquid crystals exhibit[see 8] symmetry under reversal of sip of. and do not have symmetry under reflections.
tsee the special case (2.3) on how T can be defined.
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For this, it is sufficient that r tSf E gt VS E~. In this study, we will assume this. Then given
SE ~, Sf = T8 for some SE ~. Therefore,

Sff =T8f
=TI

from (3.2), which is what we want. A similar reasoning applied to r l makes us require that
TSf- 1 E ~VS. So, for preservation of frame indifference, we require

(3.3)

An equivalent statement is that T-1 ~T = gIt.
In writing these equations, we have assumed that every element S can act on both the

domain and range of T. This is so for common materials.
Our intention is to use condition (3.3) to delimit our set of transformations 9J for a class of

materials which includes elastic materials and liquid crystals. To do this, we shall need to find
all the automorphisms of gIt. Why this is necessary will be clear in Section 3(b).

For now, let G be the set consisting of all pairs (R, c) where c E R3 and R is a 3x 3 rotation
matrix, i.e.

RRT = l,detR= 1.

G is a group under the "product" operation defined by

Lemma 3.1. Let 1': G-+ G be an automorphism t of G. Then, there exists a rotation Ro, and
a non-zero real number a 3

•
(l,z)~(I, aRoz)VzER3,

•
(R, 0) ~~RoRRoT, c(R»

for all rotations R, where c, as indicated, depends on R.
Proof. For x E G, let Co(x) be the centraliser of x, and ~o(x) be the conjugacy c~s of x in

G, i.e.

Co(x) = {y E GIxy = yx},

~G(x) ={yxy-II y E G}.

It can be verified that

We observe that

~G«I, z» = {(I, Rz)IR, a rotation},

={(I, w)llwl =Izl}.

~o«I, z» C Co«(1, z».

(3.4)

(3.5)

We shall now prove that property (3.5) distinguishes (I, z) from any other element (R, c) with
R+1.

tAn automorphism of G is a I-I function of G onto G which preserves the lIJ'OUp operation.
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Let us consider (R, e) where R f 1 and Re = e; and let R be a rotation such that

R'..l- +'eT _e,

e' Re +0. (3.6)

Such R exists; we can, e.g. choose the rotation with axis perpendicular to eand with angle of
rotation 60".

Now, if

(R, o)(R, e)(RT, 0) E Ca«R, e»,

then

which would imply that

or

(3.7)

If we take the plus sign in (3.7), we have that

R(RTe) = RTe,

~RTe= ±e

which contradicts the choice of R in (3.6). On the other hand, if we take the minus sign in (3.7),
then

R(RTe) = - RTe,

~e'RRTe=-e'RTe,

~ (Re) . e = - (Re) . e,

or

which again contradicts (3.6). Hence

(R, o)(R, e)(RT, 0) $ Ca«R, e», so, ~a«R, e» fZ: Ca(CR, e»

for R+1.
Let

. -
(1, z) >-+ (R., c.)

(3.8)

and let (R, f) be an arbitrary element in G. Since Tis onto, 3 (R, e) 3 T«R, e» = (R, f). Since by
(3.5), (R, e)(I, z)(R, er l commutes with (1, z), and since T is a homomorphism, (R, f)

(R., CJ(R, cr l commutes with CR., Ca). But CR, c) is arbitrary. Therefore, using C3.8), we
conclude that



On material symmetry in mechanics

Hence

T

(1, Z) ...... (1, ez)VZ E R3
•

Let us define 8: R3-+ R3 by 8(z) = c•. Then, 8 satisfies:

(i) 8(zl +Z2) = 8(zl) +8(Z2)'

(ii) Izi = Iwl~ 18(z)1 = 18(w)l.

This is because T maps conjugates into conjugates.

(iii) 8 is 1-1 and onto.

20S

(3.9)

This follows from (3.9) and the fact that., (and therefore .,-1) is an automorphism.
H we define i. E3 -+ E3 by 6(Xo+z) = Xo+ 8(z), where E3 is the euclidean space of

dimension 3, and Xo is a fixed element, we deduce from (i), (ii), (iii) above that 6 is 1-1 and
onto, and preserves equality of distances. By Theorem 2.23 in[lO] we have that

6(Xo+z) = Xo+aRoz

for some non-zero real number a, and some rotation Ito. Hence

8(z) =aRoz

T

(I, z) ...... (I, aRoz)

for some rotation Ito and some non-zero real number a as claimed by the lemma. Also, since

(1,Rw) =(R,o)(I, w)(RT,O)VW,

we have that

where, here

(i, c) IE .,«R,o».

Hence

(1, aRoRw) =(1, aRRow)Vw.

This means that, for all R, there is a function C(R.) 3

T

(R, 0) ...... (RoRRoT, C(R».

QED

Lemma 3.2. Let T: G -+ G be an automorphism of G such that for every rotation R,

T _

(R, 0) ...... (R, C(R»

where C(R) is normal to the axis of i.



S. A. AOELEKE

Then, there exist a vector d (independent of R), and a rotation Ro such that

(R, 0)~ (RoRRoT, RoRRoTd-d).

Proof. In view of Lemma 3.1, all we need do is produce the vector d.
Let {e, f, g} be an orthonormal basis in R3, and let RI 1T denote the half·turn with axis parallel

to z. Using Lemma 11, we realize that

for some Ai, fJ.;, i =1,2,3. By hypothesis, Al =fJ.2 =O. Since R'1TR'1T =R'1TR-1T = R·1T, it follows
that A3 =IL3. It can now be verified that

A.Roe+ A2Rof+ AJ.Rog = Ror1TRoTd-d,

fJ.IRoe + fJ.2Rof + fJ.)Rog =RoR'1TRoTd - d,

where

We therefore have that

(R-1T, o)~(RoR"1TRoT, RoR"1TRoTd-d),

(R'1T, o)~ (RoR'1TRoT, RoR'1TRoTd-d),

and, hence,

Suppose R" R2 are two rotations such that

(110)

(111)

Then, (Rio 0), (R2,0), (1, e) commute with each other. This means that their images (Rio C,),
(R2, (2), and (1, C.) respectively commute. This implies that

(3.12)

Since CI is perpendicular to axis of R, by hypothesis, 3m, unique up to a component along axis
of RI (i.e. parallel to ee) 3

From this and (3.12), it follows that
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R2m- (2 = m+kfc,

(R2m - m) - (2 = kfc.

207

Since the left hand side of the latter is perpendicular to ~, which from (3.12) is parallel to axis
of R2, we deduce that k = O.

This observation with the result in (3.11) imply that

(R, 0)~ (RoRRoT, RoRRoTd - d) (3.13)

if the axis of R is parallel to e, f or g.
We shall now prove that the same d works for R with axis not parallel to e, f or g. If we

assume that {e, f, g} is a right-handed system, it is not difficult to see that every rotation R can be
written as

(3.14)

for some RI, R', Re where Rll denotes a rotation with axis parallel to u. Indeed, if

Re = sin 9 cos", e+ sin 9 sin", f +cos 9g,

and if we set

and

it is true that

[R'l E[ si~ 8 ~
cos 8 0

-cos 8]
o '

and so, R'TRITR =R' for some Re
•

Therefore, (3.14) holds. From (3.13) and (3.14), we conclude that

(R, 0):' (RoRRoT, RoRRoTd - d)

where d is as given in (3.10).
QED

We now define a metric d on G by

If (R, c) is considered as an element in R12
, d is the Euclidean metric. If .,. is a continuous
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automorphism of G. it must preserve compactness as well as the group operation. Therefore. if

(R. 0)': (i, c),

cmust be normal to the axis of i. To see this clearly. note that

deeR, 0)", (I, o»:s 2V3

for all positive integers n and rotations R, whereas

(3.15)

is not normal to axis of i. Since (R, c) = (I, c)(R, 0)VR, c, Lemmas 3.1, and 3.2, and statement
(3.15) yield the following

Theorem. Let 1': G -+ G be a continuous automorphism of G. Then

where Ro is some rotation, d is a vector in RJ and a is a non-zero real number.

(b) Application of theorem
We shall use the theorem above in the following context:
As remarked in Section 3(a), for a constitutive equation (3.1), a may be any quantity. The

special case discussed in Section 2 takes a to be the energy density W Let us consider (3.1).
Like (2.3), a symmetry transformation T in this case is also presumed to be induced by a
transformation T' of the generalized coordinates, and T' is assumed to satisfy the analog of
(2.2). Let us use the notation:

fm(T., TD,

and let

u = XER3,

V = (n, x) E R3 X RJ,

I I

V== (ii, i) =(T II(n, x), T 12(D, x».

The collection £fl' in this case is the set of all maps S' 3

S' : (D, x, X, a) t-+ (RD, ax+c, X, Sa)V(D, x, X) E (j (3.16)

where R is any rotation and, c is any vector in R3
• Sa is normally inferred from what a is. In any

case, usually £fl' forms a group.
We shall assume that (j is closed under every element in ~, and that (3.3) is satisfied when

T, S are replaced by the maps r, S', i.e.

Condition (3.17) implies

r-ls'T',T'S'T'-I E £fl'VS' E £fl'.

T; I(Rn, ax +c, X) = iT; .(D, x, X), }

T;2(Rn, ax +c, X) =iT;2(D, x, X) +C,

Ti(Rn, ax +c, X) =Ti(D, x, X)

(3.17)

(3.18)
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V(n, x, X) EO where R =R(R, c), C=C(R, c) for the fixed T'. For a fixed (n, x, X) EO, if
{(Rkt cd} is a sequence such that

then

k -+ 00. This is deduced from the fact that T' is continuous in 0, x. The metric we are using on
{(R, c)} is the Euclidean metric on RI2 which was introduced earlier in this section.

Since 0 is closed under every SE 92, r;2(0) = R3• Therefore, 3 (ii, i, X) 3r;2(ii, i, X) = O. If
we put this in the last equation, we deduce, first, that as k -+ 00, C(Rb cd -+ c(Ro, eo), and then,
using other elements in 0, we infer that R(Rb Ck) -+ R(Ro, eo). Hence, for the fixed T', the
induced mapping

(R, e) ...... (R(R, e), C(R, e»

is a homeomorphism of G. It also preserves group operation since, by definition, T'S' =S'T'. By
the theorem above,

R(R, e) =RoRRoT

C(R, e) = aloe +RoRRoTd - d,

for some rotation Ro, some vector d and some non-zero real number a.
From (118) and (3.19), we have

T; .(Ro, Rx +e, X) =RoRRoTr; 1(0, x, X),

T;~Ro, Rx +c, X) =RoRRoTr~~n, x, X) +aloe +RoRRoTd - d,

Ti(n, x, X) =Ti(lnl, X)V(o, x, X) EO.

By putting R = I, e= -x in (3.20)" we conclude that

and

We choose R for which Ro =° to obtain

which then implies that there exists a scalar f3(n, X) such that

T;I(O, X) = /3(0, X)Ron.

(3.19)

(3.20)

Here, 13 is uniquely determined unless n = 0, when it can be any real number. Of course, 0=0
need not occur inO. Also, for R: Ro = 0,
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Thus

and
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where 1 has the same properties as p. Combining the above equations, we get

Hence,

t _
(n, x, X) ...... «ii, i, X)

where

ii & T; I(n, x, X) = pen, X)Ron,

i • T;:z(n. x. X) = a Rox + 'Y(n, X)Ron - d,

X - THlnl. X).

Using this form, we deduce easily that t satisfies (3.18) if, and only if

ii E T;l(n. x, X) = ,6(lnl, X)Ron.

i.T;2(n. x. X) =aRox +1(lnl. X)Ron - d.

X E THn. x, X) = Ti(lnl, X).

(3.21)

This is the reduced form for t which shall be used in Section 4. The functions p, 1, Ti which
are well-defined except possibly when n =0 will be further restricted by the invertibility and
differentiability requirements which are analogous to those in (2.2).

We note that arguments entirely similar to the ones we present here can be used when the
body is 2dimensional, i.e. xE R2 or when the argument n is not present. The result for the latter
is

i =Ti(x, X) =aRox - d,

X = Ti(X). (3.22)

4. SYMMETRY TRANSFORMATIONS FOR ELASTIC MATERIALS
AND LIQUID CRYSTALS

In this section, we show how the symmetry transformations for the theories of elasticity,
and liquid crystals which are quoted in Section 2 are derived.

Elasticity theory
For elasticity theory, the constitutive equation involving the energy density is of the form

(4.1)

where xE R3, X • (XI. X 2
, X 3

) denotes a material point. It is clear that this fits into the general
eqn (2.1). Let
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T':(x,X. W)~(Ti(X,X), Ti(x, X),(W + A(X»~:~~)V(X.X)E 0\.

2lI

We now consider the requirement that T' preserves frame indifference.
Let ffi i be the collection of all S' where S' is as defined in (3.16) except that the argument n is

dropped. As argued in Section 3. frame indifference is preserved if we require that (3.17) is
satisfied, i.e. if

By (3.22) and (2.3), such T' has the form

Tax, X) =aBox +d.

Ti(x. X) = Ti(X) = X(X).

W=(W +A(X»~:~~.

(4.2)

Here: Ti is invertible, Ro is some rotation, a is some non-zero real number and d is some
vector in R3

• Let us restrict ourselves to T' for which T2 maps a neighborhood of the material
point Xo into another neighborhood, and Ti(Xo) =Xoso that Xo=iio =Uo. The set of all such T
forms a group under composition. two maps being considered the same if they assume equal
values for all arguments (x. X, W) for which X belongs to a neighborhood of Xo. The
constitutive eqn (4.1) is invariant under (4.2) at point Xo if, and only if,

( . (ax) )Iax~. ( ax ax )W -,Xo +A(Xo) -= = W aRo--:-,Xo
aX ax ax ax

ax
for every aX'

. (ax ) .,. ( ax ax )laXI¢:> W - Xo = w aRo--=,Xo - -A(Xo).ax' ax aX aX

As used earlier, I:;Irepresents (det :;) and I:~ =Idet ( :~ I·
It is most commonly assumed in the literature that A =0, a =± 1. However, Truesdell[7]

considered transformations that correspond to putting a =1,1:;1 =1in (4.2) but allowed for A

not being zero and Wang in[4] gave some examples of materials having some symmetry
transformations with At O. Gurtin and Williams[ll] argued that, if the symmetry trans
formations to be considered are equivalent to those obtained by setting a =I, A =0 in (4.2),

then by thermomechanical reasoning,I:;~ must also be set equal to 1; Liu's[l2] paper is along

the same line although his definition of symmetry is a little different.
Though transformations with lal =1 characterise the symmetry of many materials as

shown in the references cited above, yet there ,are materials whose symmetry cannot be fully
described by these transformations. For instance, let us find the group that characterises the
symmetry of the ideal gas in the class of elastic materials. For an ideal gas which is always
under isothermal conditions, the energy density is

. (ax) IallW ax' Xo =k log ax +c (4.3)

where k > 0, c is a constant. It can be verified that (4.3) is invariant under the following special
class of elements of form (4.2):
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TJ(x, X) = aRox +d,

T2(x, X) = X(X),

W= w+3k logIa I,
(4.4)

where ~:~~ = 1. Conversely, as can be verified, within the class of elastic materials, the

material that has (4.4) as its symmetry group is the ideal gas (4.3).
This example shows one feature of not restricting symmetry transformations to those with

la! =1. Although (4.3) is invariant under all unimodular transformations (i.e. in this case lal =1),
it is by considering transformations with 1«1+ 1that we are able to characterise its symmetry.

We observe that tbere is no material known which is invariant under the transformations
that arise from

Tax, X) =aRox +d,

Ti(x. X) = X(X),

W=W

where 1« :~I =lall+1 since such a material would assume a constant value for all F. This

shows that we should not expect the whole of tbe symmetry group for a class to correspond to
a material. The set of all transformations

where a1:~I >0 constitute the group YOl from which symmetry groups can be chosen for

materials within the class of elastic materials. The condition

a I~~I >0 merely ensures that 1;;1 >0 implies 1;;1 >0.

Liquid crystals
We shall now show that liquid crystals are special materials in the class of materials having

constitutive equation

.~, (an iJx )w= w iJX' aX. n•X (4.5)

where (n, x, X) E (J" C RJX R3 X RJ.
It was derived in Section 3b that the form (3.21) for T' ensures that frame indifference is

preserved. i.e.

ii = tJ{lnl. X>Ron,

i = IX Rox+')'(Inl, X)Ron - d,

X= T;{lnl, X).

For liquid crystals, the state space is commonly considered to be

(4.6)
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As done for elastic materials. in order to discuss unusual symmetry of a point, we assume that
Tl (I, . ) maps a neighborhood of Xo into a neighborhood of Xo. Since there is no element in (J2

with n=O. f3. 'Yare well-defined everywhere. Also. it makes no difference whether we set

Inl = 1 in (4.6) before finding a~, a~ or after. So. we can take f3(lnl, X) = :t 1; also, 1aX~1= I
ax ax a

whenever I:;I=J. The functions 'Y and T) must also reduce to functions of X only. The

condition that I:;I= I whenever I:;I=1 is therefore equivalent to

I ax !:L an I laxia aX (Xo)+n0ax(Xo)+'Y ax (Xo) = aX (4.7)

laxl an. (an)Twhenever aX =1 and for every aX for whIch ax n=O.

With choice of :;=O. and choice of diagonal matrices for :; in (4.7), we conclude that

~(Xo)=O. Further. if we choose

n(X) = (cos (Xl - Xo'), sin (Xl - Xo~, 0),

and choose :; diagonal in (4.7). we deduce that

y(Xo) =0.

Therefore. without loss in generality. if T' E 9"02, it will be of the form

ii = :tRon,

i =aRox-d,

X=X(X).

W=(W +A(X»":~",

(4.8)

where ":~,, =lall.
Suppose a special material M is characterized by a group of symmetry '6 that contains all

transformations of the form

T':ii =:tn,

i=x,

x=X(X).
- Bax.
W=WllaxD=~

Since we assume that elements in the domain of definition of W satisfies 1:;1 = 1, we easily

infer that the energy density for M satisfies

.t, (an ax ) .•. (an ax )
w ax' aX' n, Xo =w iJx' aX' D, Xo
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t (an )= W ax,n,Xo (4.9)

Of course, frame indifference will imply that

t ( an T ) _ t (an )W R axR ,Ro,Xo - W ax,n,Xo , (4.10)

for all rotations. Let us assume that we can neglect Xo. If ~ contains no other element other
then the ones already stated, examples of materiaJ M are provided by the cholesteric liquid
crystals. However, if we assume that ~ also contains elements of the form

ii= n,

i=±x,

x=X,

then M has the symmetry of a nematic liquid crystal.
What we have proved is that the symmetry of a cholesteric liquid crystal in the class

specified by (4.5) is characterized by the symmetry group consisting of all T':

ii =±Ron,

i =Rox-d,

X=X(X),

W=W

(4.11)

where I:~I = 1, and that that of a nematic liquid crystal is described by maps of the form

ii =±Ron,

i = ±Rox-d,

X=X(X),

W=W

(4.12)

where I:~I=1and where the two (±) signs are not associated.

As remarked in Section 2, the set of transformations of material coordinates aJone does not
adequately account for the symmetry of liquid crystals in the class (4.5). Equation (2.6) follows
by a reasoning similar to that in eqns (4.9) and (4.10). The materiaJ which has constitutive eqn
(2.6) has a symmetry which corresponds to that of a fluid in elasticity.
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